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Redundancy is commonly used as an effective means to ensure the high de-
pendability of engineering systems. This leads to a trade-off related to the
timing of replacing failed components: faster replacement reduces the risk of
system failure but is generally more expensive. This paper discusses several
approaches to assessing the risks of system failure in the presence of deferred
maintenance. The relationships among several existing models are examined,
with a focus on the commonality and limitations of those models. In addition
to Markov models, the impact of deviating from those assumptions is studied
for two applications with the fixed time repair delays.
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1. Background

Historically, the dominant application domain was safety-critical systems

(in particular, this is referred to in the filed of aerospace as Time-Limited

Dispatch [1,2]). The estimated risks were quite small, which impacted the

choice of models. In particular, the implicit assumption of the models was

that the expected time to repair was significantly less than the expected

time to failure. The technologies associated with the Internet of Things

provide both the opportunity and the incentives for making maintenance

strategies more sophisticated. As a result, deferred maintenance policies

are likely to expand in scope, potentially exposing the limitations of some

models. The goal of this paper is to provide a unified view of the existing

approaches and to evaluate alternative methods that can either improve

the models’ accuracy or their scalability. In particular, an application of a

procedure described in [3] is provided to capture non-Markovian effects.

Deferred maintenance can be construed as one of the fundamental reli-

ability problems for repairable systems: as systems degrade, the timing of
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maintenance actions must be selected to balance the risks of systems failures

with the maintenance costs. Let us consider the following system states:

a set of up states, U1 . . . Un, including the original (full-up) state U1; and

the failed states F1 . . . Fm (aggregating all failed states into a single failed

state F does not impact the dynamic of the up states Ui). Memoryless

(i.e., constant rate, or following exponential distribution) assumption for

the transitions between system states is often utilized for continuous time

processes. The resulting Markov processes are attractive due to their supe-

rior analytical tractability, but the impact on the resulting accuracy of the

model is not always clear in practical applications. On the one hand, fail-

ures and repairs often don’t follow exponential distributions; on the other

hand, the resulting modeling error for the metrics of interest can be still

small (or absent), depending on the structure of the problem.

There is extensive research on non-Markovian processes going back over

sixty years [4] (see also the review of the recent state-of-the-art [5]). How-

ever, to date the practical reliability applications of the existing methods

are quite limited due to their complexity. Monte Carlo simulation provides

the flexibility of modeling non-Markovian processes with the cost of a lack

of analytical transparency and computational errors that can be significant

for rare events. In this context, this paper relies on a relatively simple

analytical method that allows the modeling of non-exponential holding (so-

journ) times [3]. The generality of the method is further explored in [3],

while here the application of the method to two problems with constant

repair delays is demonstrated. Instead of solving a non-Markovian problem

from scratch, the method relies on finding an equivalent Markov model with

the same asymptotic behavior.

Let us consider a fleet of systems (i.e., aircraft, windmills, computer

servers, etc.) and focus on evaluating the expected fleetwide frequency of

system failures. In safety-critical systems, there might be a regulation stip-

ulating an allowable limit on such a frequency. E.g., in civil aviation the

regulating authority uses this quantity as opposed to a specific risk associ-

ated with a particular system [1]. For Markov processes with n states and

continuous time the governing system of (Chapman-Kolmogorov) differen-

tial equations can be written as follows:

dP (t)

dt
= Q · P (t), Qii = −

n
∑

j 6=i

Qji Qin = 0 (1)

Here are Pi(t), i = 1 . . . n the probabilities of being in state Si: Pi(t) =

P{X = Si}, and Q is the transition rate matrix with the diagonal terms



compensating for the off-diagonal terms in each column and the last zero

column representing the absorbing state. The systems’ hazard rate (i.e.,

the probability that the system will fail given that it has not failed yet) is

an absolute value of the second largest (Perron-Frobenius) eigenvalue of the

matrix Q (see [6] and [3]). Indeed, using the Perron-Frobenius theorem,

one can show that there is a unique largest negative eigenvalue −k for the

transition rate matrix Q. In addition, there is a zero eigenvalue due to the

absorbing state. As a result, as time t → ∞, only the contribution from the

two largest eigenvalues can be retained.The other eigenvalues are negative

with absolute values larger than k. Here ci and vi are components of the

first two eigenvectors, and A and B are the corresponding constants with

A uniquely defined because F is an absorbing state:

P{X = F}(t) ≈ Acn +Bvn+1e
−kt = 1−Bvn+1e

−kt

P{X = Ui}(t) ≈ Aci +Bvie
−kt = Bvie

−kt

The system hazard rate is therefore h(t) = dF/dt/(1− F (t)) = k.

1.1. Dual Redundancy: Markov model

Let us consider a system consisting of two identical redundant components,

so that operation of only one component is required for system operation.

The failure and repair rates for each component are λ and µ, respectively.

The transition rate matrix Q has the following form:

Q =





−2λ µ 0

2λ −λ− µ 0

0 λ 0



 (2)

For this system the absolute value of smallest (negative) root is

k1 =
3λ+ µ−

√

(3λ+ µ)2 − 8λ2

2
(3)

An alternative calculation is based on the solution of the renewable

process equation, following Birolini [7]a. The method relies on the solution

of the integral equations of the renewal process using Laplace transforms.

As a result, for any up state Ui mean time to failure (MTTF) mi can be

calculated using the following system of the linear algebraic equations:

q̃imi = 1 +

n
∑

j=1,j 6=i

qjimj (4)

aSee Appendix A.7.5.3.2 in an excellent A. Birolini book [7].



For the considered double redundant system, this yields the following

solutions:

m1 =
3λ+ µ

2λ2
m2 =

2λ+ µ

2λ2
(5)

As expected, mi does not depend on the last column of the matrix Q

(i.e., on the transitions from the failed state—but at least one of those

transitions must be present for the analysis to be valid to avoid absorbing

states). However, the steady-state probabilities for each state do depend

on recovery from the failed state. Let us adopt a standard method [1,2]

where upon failure the system returns to the “fully up” state U1. In fact,

the introduction of such an “artificial” transition allows an even simpler

approach to estimating the system hazard rate: once the probabilities for

the resulting steady state are established, we can evaluate the conditional

probabilities of being in an up state given the fact that the system has not

failed P̄i = P{X = Ui|X 6= F}, and use those probability to weight-average

the rates of direct transitions to the failed state:

ks =

n
∑

i=1

P̄iqni (6)
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Figure 1. Comparing hazard rates of Markov models for a two-part system.

Figure 1 demonstrates the comparison of these approaches for different

values of ρ = λ/µ. in addition to the Perron-Frobenius eigenvalue, steady-

state, and Birolini methods, there is a “Birolini Balanced” curve that is



obtained when the recovery from the failed state is arranged to match the

asymptotic conditional probabilities P̄i in the presence of the absorbing

state (as calculated based on the eigenvalue analysis). While the differ-

ences can be observed when ρ ≈ 1, for smaller values of ρ, all four curves

converge. The rate of convergence to Perron-Frobenius values is different

for the considered methods: the differences for “Birolini Balanced” are neg-

ligible even for very large values of ρ = 10. For ρ = 1 (and considering µ = 1

for specificity, since all the values scale with µ) the steady state value is

0.5, while both the Perron-Frobenius and Birolini methods show very close

results: 0.58579 and 0.58333, respectively.

1.2. Fixed repair delays

Let as turn to non-Markovian effects for this problem and consider fixed

repairs with mean value of τ = 1/µ, and for specificity, consider τ = µ = 1.

Using finite-difference method with a step of 6 × 10−4 and 10, 000 steps

(the sojourn time distribution for repair is a part of the state description)

leads to the value of the hazard rate 0.62513 (see details in [3]). This value

differs significantly from the one for the exponential repair (0.58579).

Next, we calculate the asymptotic value using the method described

in [3]. The method is based on the presence of the quasi-steady state after

the initial transient phase Eq. 2. As a result, for any node of the state-

space representation, the total inflow (regardless of the number of inflow

transitions) has the same time dependency as the individual up states, i.e.,

proportional to e−kt, where k is the Perron-Frobenius eigenvalue. This

allows us to infer the holding time distribution for this node, taking into

the account the intensity of the outflow into other nodes (in our case, the

failure of the system). For the fixed repair time, we can observe that the

equivalent failure rate of the repair will be equal to

µ̂ =
λ− k

eτ(λ−k) − 1
(7)

At the same time Eq. 3 relates k to µ̂ and λ. Since k is monotonically

decreasing with µ̂, a simple iteration requires only a few steps to reach the

solution for both: µ̂ = 0.82427 and k = 0.62518; comparing this value with

the “brute force” methods demonstrates the accuracy of this approach.

2. FADEC system

Next, let us consider a simplified Full Authority Digital Electronics Control

system (FADEC) [2] as depicted in Figure 2B. This representation of failure



logic is referred to as a reliability block diagram, where each component is

denoted with the block interrupting the path in the corresponding location

if it fails. The system is operational as long as there is an uninterrupted

path from the sink on the left to the source on the right.

FADEC has built-in high redundancy that leads to a very low probabil-

ity of loss of control when all the components are fully functional. The high

redundancy also leads to a large number of components comprising the sys-

tem, so the chances of one of those components failing are relatively high.

This renders impractical immediate replacements of components upon fail-

ure and leads to the need for operations with degraded redundancy.

Specific numeric values are taken from [2]: failure rates (per hour) are

λ1 = 5.2×10−5 and λ2 = 6.5×10−5 for CPU units, and λ3 = 8.0×10−5 and

λ4 = 9.0 × 10−5 for channel power. A cross-link is provided, so a working

component from a different channel is used if the corresponding component

from its own channel fails. The corresponding Markov diagram is shown

in Figure 2A. No repairs are shown on the diagram for clarity’s sake, but

they are determined based on the policies described below.

There are two categories of time-limited dispatch applied after the fail-

ure of a single component: long- and short-term dispatch intervals (LTD

and STD, respectively). LTD varies between 200 and 2, 000 hours, and is

applied when a CPU fails (represented by states B1 and B2); STD is 200

hours, and applied if a power unit fails (represented by states C1 and C2).

Two failures result in a Do Not Dispatch (DND) policy (so the aircraft is

grounded and repaired) within 5 hours (states Di on the diagram).
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Figure 2. FADEC system: A) Full Markov state space B) RBD diagram C) Reduced
Markov state space

The hazard rate, as calculated using the Perron-Frobenius eigenvalue

varies slightly sublinearly, from 3.857× 10−6 to 1.021× 10−5 between the



LDT limits. Using this rate as a reference, the relative differences in rate

predictions are shown in Figure 3. Four methods are used for exponentially

distributed repair (equivalent repair rates µ1, µ2, and µ3 are the respective

inverses of TLD intervals LDT, SDT, DND). In addition to the full Markov

steady-state method (shown in black), there are three approximate steady-

state methods that rely on a reduced-state diagram, as shown in Figure 2C,

to evaluate P̄i for single failures only. These methods utilize Eq. 6 using the

respective transition rates to the failure state. The Time-Weighted Average

(TWA) method uses the repair rates shown in Figure 2C, while the Reduced

Markov method corrects for the outflow to the failed state from each single

failure state; so for example, for state B1 the rate is corrected as follows:

µ1 → µ1 + λ2. Both TWA and Reduced Markov are methods approved by

the FAA [1], and the need to utilize reduced-state models is driven by the

state-space size of real-world problems.
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Figure 3. Comparing hazard rates for FADEC.

Instead of discarding the impact of dual failures that do not lead to

system failure (Di), one can note that a short duration of DND policy (and

the resulting low risk of system failures from those states) implies that

getting into those states is equivalent to recovery to the fully operational

state. This leads to a refinement of the reduced Markov model, where the

repair rates are further corrected to include failure of all other components

(so for B1, the rate is corrected as follows: µ1 → µ1 + λ2 + λ3 + λ4). As

can be observed in Figure 3 (orange curve), the difference compared to

the full Markov steady-state rate is negligible. Since the component failure



rates are at least two orders of magnitude smaller than the repair rates,

the difference between the steady-state renewal process and the asymptotic

rate is small (cf. ρ = 0.01 in the dual-redundant example, Figure 1).

The other two curves are obtained by applying corrections for the fixed

delay. The green curve is based on the asymptotic rate correction (Eq. 7).

The blue curve is based on the similar correction for the steady-state solu-

tion. The latter correction is even simpler to implement: k is set to zero in

Eq. 7), and no iterations are required (see [3] for details). The difference

between those two curves is small (just like for the corresponding cases with

exponential repair). However, there is a sizable difference when fixed repair

delays are compared to exponential repairs with the same mean (about 10%

for the upper limit of the LDT range).

3. Conclusions

The paper demonstrates the relationships among different approaches for

estimating the hazard rate of a redundant system with deferred mainte-

nance policies. The accuracy of a refined reduced-state Markov model and

the approximating fixed-repair delays with the equivalent Markov mod-

els [3] are demonstrated. The resulting models are relatively simple and

scalable, so it is hoped that their use will be more widespread in the future.
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